Deepseek - Pay Attentions To these 10 Indicators > 자유게시판

본문 바로가기

자유게시판

Deepseek - Pay Attentions To these 10 Indicators

페이지 정보

profile_image
작성자 Sammy Imhoff
댓글 0건 조회 10회 작성일 25-02-03 11:14

본문

image-1.png Sacks argues that DeepSeek offering transparency into how data is being accessed and processed offers one thing of a verify on the system. Let’s check again in a while when fashions are getting 80% plus and we can ask ourselves how basic we think they are. Take a look at their repository for more information. Besides, we try to organize the pretraining information at the repository stage to reinforce the pre-skilled model’s understanding capability throughout the context of cross-files inside a repository They do this, by doing a topological type on the dependent files and appending them into the context window of the LLM. The draw back, and the rationale why I don't record that because the default possibility, is that the files are then hidden away in a cache folder and it's tougher to know where your disk house is being used, and to clear it up if/once you need to take away a download model.


This should be interesting to any builders working in enterprises that have data privacy and sharing considerations, however still need to improve their developer productivity with locally operating models. Please go to DeepSeek-V3 repo for extra information about operating DeepSeek-R1 regionally. Through the pre-training state, coaching DeepSeek-V3 on every trillion tokens requires solely 180K H800 GPU hours, i.e., 3.7 days on our personal cluster with 2048 H800 GPUs. You will also must be careful to pick a mannequin that can be responsive utilizing your GPU and that will rely greatly on the specs of your GPU. When evaluating model outputs on Hugging Face with these on platforms oriented towards the Chinese audience, models subject to much less stringent censorship supplied extra substantive answers to politically nuanced inquiries. This efficiency degree approaches that of state-of-the-artwork fashions like Gemini-Ultra and GPT-4. Open-source Tools like Composeio further help orchestrate these AI-pushed workflows across totally different systems convey productiveness enhancements.


Looks like we might see a reshape of AI tech in the approaching year. Santa Rally is a Myth 2025-01-01 Intro Santa Claus Rally is a well-known narrative in the stock market, the place it is claimed that traders typically see optimistic returns during the final week of the year, from December 25th to January 2nd. But is it an actual pattern or just a market delusion ? Here is the list of 5 not too long ago launched LLMs, along with their intro and usefulness. Later, on November 29, 2023, DeepSeek launched deepseek ai LLM, described as the "next frontier of open-source LLMs," scaled as much as 67B parameters. On 2 November 2023, DeepSeek released its first series of model, DeepSeek-Coder, which is available for free to both researchers and industrial users. Imagine having a Copilot or Cursor various that is each free and personal, seamlessly integrating with your growth setting to offer real-time code recommendations, completions, and opinions. It is a ready-made Copilot that you could combine together with your software or any code you can access (OSS). 하지만 각 전문가가 ‘고유한 자신만의 영역’에 효과적으로 집중할 수 있도록 하는데는 난점이 있다는 문제 역시 있습니다. 이렇게 하면, 모델이 데이터의 다양한 측면을 좀 더 효과적으로 처리할 수 있어서, 대규모 작업의 효율성, 확장성이 개선되죠.


1920x77055fe2415eb454df599c4ca4e580df3ec.jpg DeepSeekMoE는 LLM이 복잡한 작업을 더 잘 처리할 수 있도록 위와 같은 문제를 개선하는 방향으로 설계된 MoE의 고도화된 버전이라고 할 수 있습니다. DeepSeek-Coder-V2는 컨텍스트 길이를 16,000개에서 128,000개로 확장, 훨씬 더 크고 복잡한 프로젝트도 작업할 수 있습니다 - 즉, 더 광범위한 코드 베이스를 더 잘 이해하고 관리할 수 있습니다. 이전 버전인 deepseek ai-Coder의 메이저 업그레이드 버전이라고 할 수 있는 DeepSeek-Coder-V2는 이전 버전 대비 더 광범위한 트레이닝 데이터를 사용해서 훈련했고, ‘Fill-In-The-Middle’이라든가 ‘강화학습’ 같은 기법을 결합해서 사이즈는 크지만 높은 효율을 보여주고, 컨텍스트도 더 잘 다루는 모델입니다. DeepSeek-Coder-V2는 이전 버전 모델에 비교해서 6조 개의 토큰을 추가해서 트레이닝 데이터를 대폭 확충, 총 10조 2천억 개의 토큰으로 학습했습니다. 236B 모델은 210억 개의 활성 파라미터를 포함하는 DeepSeek의 MoE 기법을 활용해서, 큰 사이즈에도 불구하고 모델이 빠르고 효율적입니다. 대부분의 오픈소스 비전-언어 모델이 ‘Instruction Tuning’에 집중하는 것과 달리, 시각-언어데이터를 활용해서 Pretraining (사전 훈련)에 더 많은 자원을 투입하고, 고해상도/저해상도 이미지를 처리하는 두 개의 비전 인코더를 사용하는 하이브리드 비전 인코더 (Hybrid Vision Encoder) 구조를 도입해서 성능과 효율성의 차별화를 꾀했습니다.

댓글목록

등록된 댓글이 없습니다.


Copyright © http://www.seong-ok.kr All rights reserved.